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Since the synthesis of R2SnSnR2 (R ) CH(SiMe3)2) in 1973,1

numerous examples of heavier group 14 element (tetrel) alkene
analogues have been isolated and characterized.2 The great majority
of these possess trans pyramidal, dimeric structures (I) that display
a preference for dissociation to monomers with increasing atomic
number as shown by eq 1.

Nonetheless, in a series of computational studies3,4 on the simple
hydrogen derivatives M2H4 in the early 1990s, Trinquier showed
that a number of other structural minima (II-V) could exist as
illustrated by the structures below.

Indeed, for tin and lead, the trans, doubly bridged isomer II was
found to be the absolute minimum, with the cis isomer III lying
slightly higher (ca. 2 kcal mol-1) in energy.5 Furthermore, the un-
symmetric isomer IV was only 5.0 kcal mol-1 less stable. Through
the use of these guidelines and a combination of substituents we
have shown that organosubstituted tin derivatives of the doubly
bridged and unsymmetric structures II6 and IV7 could be isolated
and characterized. It was also shown that, although a trans pyramidal
dimer (I, shown in eq 1) is preferred for germanium, it could be
transformed into the unsymmetric form (IV) by reaction with a
Lewis base.8 Despite this, a stable analogue of the singly bridged
isomer V has proven to be elusive.5 Reference to the Trinquier
calculations, however, shows that V lies just 0.9 kcal above IV, or
7.9 kcal mol-1 above the absolute minimum II, which suggests that,
energetically at least, a derivative of such a species should also be
obtainable. We now show that by suitable manipulation of
substituents the singly bridged derivative Ar′Sn(µ-Br)Sn(Ar′)-
(CH2C6H4-4-Pri), 1, (Ar′ ) C6H3-2,6-Dipp2; Dipp ) C6H3-2,6-Pri2)
can be isolated and characterized structurally and spectroscopically.
For comparison, the characterization of the related symmetric trans
pyramidal species{Sn(Ar′)(CH2C6H4-4-But)}2, 2, is also reported.9

Compound1 can be isolated10 via the direct reaction of Ar′SnCl11

with 0.5 equiv of BrMgCH2C6H4-4-Pri, which yielded1 as large
orange crystals.119Sn NMR spectroscopy of1 in C6D6 solution
afforded two signals of equal intensity at 1399.8 and 2274.3 ppm.
X-ray crystal data12 showed that the solid-state structure (Figure
1) features bromine bridging two tins, one of which (Sn(1)) is

bonded to Ar′ and CH2C6H4-4-Pri groups and the other to a single
Ar′. The Sn-Sn distance is 2.9407(4) Å, and the bridged Sn-Br
distances are unequal, having the values 2.7044(5) (Sn(1)) and
2.7961(5) Å. The three Sn-C bond lengths are in the narrow range
2.196(3)-2.212(4) Å. The interligand angles surrounding the tins
display extreme variation and are provided in the caption of Figure
1. The reaction of Ar′SnCl with 1 equiv of BrMgCH2C6H4-4-But

afforded2, which has a trans pyramidal structure (Figure 2) found
for most (SnR2)2 dimers.2 The most prominent features of the
structure are the Sn-Sn bond length of 2.7705(8) Å and an out of
plane angle of 42°. 119Sn NMR spectroscopy of2 in C6D6 afforded
a signal at 1205.7 ppm.

The singly bridged structure of1 is unique for low-coordinate
tin(II) organometallic derivatives. The details of the structure and
119Sn NMR spectroscopy establish that it is bromide bridged rather
than an unsymmetric species of the type Ar′SnSn(Br)(Ar′)-
(CH2C6H4-4-Pri). The chemical shifts obtained for Sn(1), 1399.8
ppm, and Sn(2), 2274.3 ppm, both lie in the Sn(II) rather than the
Sn(IV) range and suggest that the structure in the solid state is
retained in solution.9,13 The bridging Sn-Br distances differ by ca.
0.09 Å and are similar to the 2.81(2) Å bridging Sn-Br distance
in [Fe(Sn{N(But)}2SiMe2)2Br2]2.14 In addition, the disposition of
the C(1) and C(61) ligands is toward the bromine side of the
molecule. This is the same structural distortion as that predicted
for V and, as further observed by Trinquier,4 is consistent with the

Figure 1. Selected bond lengths (Å) and angles (deg) for1. H atoms are
not shown. Sn(1)-Sn(2)) 2.9407(4), Sn(1)-Br(1) ) 2.7044(5), Sn(2)-
Br(1) ) 2.7961(5), Sn(1)-C(1) ) 2.201(4), Sn(1)-C(61)) 2.196(3), Sn-
(2)-C(31)) 2.212(4), Sn(1)-Br(1)-Sn(2)) 64.61(1), Br(1)-Sn(1)-Sn(2)
) 59.20(1), Br(1)-Sn(2)-Sn(1) ) 56.18(1), Sn(1)-Sn(2)-C(31) )
107.83(9), Br(1)-Sn(2)-C(31)) 96.891), Sn(2)-Sn(1)-C(1)) 117.66(9),
C(1)-Sn(1)-Br(1) ) 103.8(1), C(1)-Sn(1)-C(61) ) 104.6(1), Sn(2)-
Sn(1)-C(61) ) 133.96(9).

Published on Web 03/16/2004

4106 9 J. AM. CHEM. SOC. 2004 , 126, 4106-4107 10.1021/ja0316871 CCC: $27.50 © 2004 American Chemical Society



view that it represents the midpoint in the transformation of the
trans pyramidal geometry in I to the unsymmetric structure IV, that
is, from Ar′(Br)SnSn(Ar′)CH2C6H4-4-Pri to Ar′SnSn(Br)(Ar′)-
CH2C6H4-4-Pri. The Sn-Sn distance, 2.9407(4) Å, in1 is longer
than that calculated for V, 2.74 Å. However, similarly long distances
have been observed for the unsymmetric Ar*SnSnMe2Ar* 6a (Sn-
Sn) 2.8909(2) Å, Ar*) C6H3-2,6-Trip2; Trip ) C6H2-2,4,6-Pr3

i )
or Ar*SnSnPh2Ar* (Sn-Sn) 2.9688(5) Å.7b Presumably, the large
substituent size, the strained geometries at the tins, as well as the
fact that bromine (and not hydrogen) is the bridging atom, contribute
to Sn-Sn bond lengthening in1.15 The dimeric structure of2 is
also significant in that the Sn-Sn distance, 2.7705(8) Å, is among
the shortest observed for R2SnSnR2 compounds1,2 and lends support
to the idea that a species analogous to V is intermediate between
R2SnSnR2 and RSnSnR3. The 119Sn NMR chemical shift of2
(1205.7 ppm) indicates that the dimeric structure is retained in
solution and does not coincide with either of the two119Sn NMR
signals seen for1.13

In summary, the isolation of1 increases the number of structur-
ally modelled isomers of a distannene to four. Only the cis, doubly
bridged isomer III remains unmodelled.
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Figure 2. Selection bond lengths (Å) and angles (deg) for2. Sn(1)-Sn-
(1A) ) 2.7705(8), Sn(1)-C(1)) 2.180(5), Sn(1)-C(31)) 2.175(6), C(1)-
Sn(1)-C(31) ) 101.4(2), Sn(1A)-C(1) ) 112.1(1), Sn(1)-Sn(1)-C(31)
) 116.2(2).
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